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ABSTRACT

Today, according to the advancement of functional graphic
software programs, beautiful graphics including
multidimensional polybedrons with mathematical structures
have emerged among CGs. The fractal is one type of them,
and some beautiful patterns are being expressed on such
displays as television and books. This paper reports
geometric definitions, expressions and figures for drawing
one type of them, highlighting that this type of surface-
graphic has geometric structure (inversion and its center).
There are still many problems to be solved, including how
to obtain its nature, that is, how its cross-sectional
composition has spatial relation and differential geometric
features. For example, the oval surface, one of graphics to
be reported here, may have some relation to biogeometry
and also be related with space structure because it is a
curved surface derived from the ellipse-generalized oval.
And so, the essence and appilication of real-fourth-order
surface may be clear and that these study may be utilized
for the development or study of technological software
programs such as CG in oder to create better civilization
and culture in our space.

Key words: convexity surface, pseudotorus, self-crossing
surface, double closed surface, center of inversion.

1. INTRODUCTION

In these days, mamy advanced technological software
programs have been developed, allowing it relatively easy
to draw curved surfaces within three-dimensional space
from parametric expressions. Although curved surfaces can
be easily expressed using parameter equations, very few of
them indicate the relation between their expressions and
surface positions. This paper reports a derived
closed-surface to be called the "segment convexity surface"
which can be defined from a plane figure as is the case
with a previously-reported ovaloid.

These curved surfaces include the double closed surface
whose inner part is ovaloid, the fourth order surface with

the same shape of torus and the self-crossing surface. They
are those surfaces which can be defined from double circles
with one contained in the other and their positions can be
figured out as properties unattainable only with parametric
expressions.

2. SEGMENT CONVEXITY SURFACE

If two points P, Q exist on a radius vector circulating on a
plane with the origin F, when a circle with the mid-point of
segment PQ as center and the length of PQ as diameter is
vertically erected on the plane to move the radius vector,
the surface of produced solid model becomes a curved one.
As shown in fig. 1fig 4, the curved surface as generated in
this way shall be referred to as "segment convexity surface".
Apparently, a curved surface obtained from a segment with
the constant length fixed on a radius vector is a torus, and
if the mid-point of PQ is F and the length of PQ is constant,
a spherical surface with PQ as diameter is produced.

Fig. 1 Segment convexity surface

3. RELATION BETWEEN A RADIUS VECTER AND A
SEGMENT FOR DRAWING AN OVAL (plane figure)

The oval as an extended type of ellipse can be defined as a
curved line with a constant ratio of the distance from one
point to that from a fixed circle (Ebisui, 1994).

Here, the figure to define the ratio of the oval line's inner
and outer branches specified by two fixed circles (Ebisui,
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1996a) shall be comsidered. From this figure, the spacial
surface can be defined with the movement of segment on
the radius vector.

3.1 Definition of oval line (construction method)

[Construction method]

The oval line as an extended type of ellipse can be
uniquely defined by specifying two circles with one
contained in the other.

Tro Auxiliary Circle & Oval

Fig.2 Two auxiliary Circles & the Oval

In fig. 2, two circles shall be specified with points O, and
O as centers. Centers of similitude for these two circles
(see figure 2) shall be referred to as Fi, F.. Two parallel
lines passing F: and F: shall be called /, and /.. Nodes of /
and % with circle O shall be called M:, M; N, Ny,
respectively and nodes of /i and % with cirole Ou shall be
referred to as M., M:; N;, N2, respectively. The node of
two lines passing F., F: as well as being parallel to two
segments OMi, OwN,, radii of circle Ov, respectively shall
be called P as shown in fig.(a) extracted from a part of fig.
2. Likewise, Q of (b) in fig. 2 shall be obtained. At this
time, when 4, L rotate around rotation centers F, F,
Tespectively, inner and outer parts of oval line are drawn by

>

3.2 Properties I of auxiliary lines for construction

Prop.(1) From Pappus' theorems(Palej,1997), M, P, N: are
collinear and Mz, N, Q are also collinear.

Prop.(2) Lines MiN: and M>'N, are orthogonalized on point
P. It is because (@ + 8 )=90 ° can be obtained from 2
(a+B8)=180 °
Lines M:N:; and Mi'N: are also orthogonalized on point Q.
Prop.(3) Three points F;, P, Q are collinear.

of]
Since F: is the center of similitude, O.:N//OuN: is valid.

From the condition, O..Ny//F.P can be obtained. From the
condition, OwNy/F.P, OuNJ/FQ is acquired. Therefore,

FiP//F:Q is obtained.
Likewise, three points Fi, P', Q' are collinear.
3.3 Proof that an oval line is drawn by P, Q.

In fig. 2,If the node of F:P and & is referred to as A, FIA is
constant because F1A/OuN; is valid and the radius of circle
On: is constant. That is, when L rotates around F2, a fixed
circle (F: as center and F1A as radius) is drawn by A. Here,
FN13N1A=F20122012F1=II1:II shall be validd In A FzPA,
becanse a line PN, is the bisector of <« FPA,
PFzZPA=F2N1IN1A=F20122012F 1 can be obtained.

Therefore, since PF.:PA is constant, P is a point with a
constant ratio of the distance from a fixed circle (Fi;F1A) to
that from a point F.. At this time, since J=F.A=F,P +
PA=F\P + (Wm)F:P, r1 +n/mr2=] (J=comnstant) is valid in
bipolar (F, F:)coordinates(r1,12).

Therefore, mrl + nr2=mJ can be obtained.

This expression demonstrates that P exists on Descartes'
oval line.

Likewise, for Q, mrl-nr2=mJ can be obtained.

3.4 Properties I of auxiliary lines for construction

Fig3 5 segments on the Oval

Fig. 3 shows a graphic produced by symmetrically moving
a part of fig. 2 with a line FIF?2 as axis of symmetry. That
is, lines F1PQ and F IP-Q- are symmetric with a line F1F2.

Prop.(1) Four points F1, P- P'| F2 exist on the same
circumference.

[Proof]

Since P- and P in fig. 2 and 3 are symmetric, £ F1PF2=
Z MI1OI2NI= / MI'O12N1= / FIP'F2 can be obtained
allowing £ FI1P-F2=/ FIPF2 1o be true. Therefore,
from the theorem of angle of circumference, the above
condition is valid.

>

Prop.(2) Due to the above-mentioned property, two visual
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angles between two points F1, F2 from P-, P' are equal.
Therefore, from the note (Ebisui, 1996b), a line P-P' passes
the third focal point F3 in fig. 3.

Prop.(3) Four points F1, Q-, Q', F2 exist on the same
circumference.

[Proof]

Since £ FI1Q-F2=/Z FIQF2=4 M202IN2=/
M2'0O21N2'= £ F1Q'F2, the above condition is valid.

Prop.(4) As the case in (2), a line Q-Q' passes the third
focal point F3.

Prop.(5) Three points Q, F2, P' are collinear.

[Proof] o
In fig. 2, since F1 is the center of similitude,
021M2//012M1' is valid. From the condition,

021M2//F2Q, OI12M1'//F2P'
F2Q//F2P' is obtained.

can be acquired. Then,

Therefore, three points Q, F2, P’ are collinear.
Prop.(6) Quadrangle Q-P-P'Q'

circumference.

[Proof]

Due to the property as shown in (5) and the symmetric
relation of Q-, Q with F1F2, the following equation is
valid:

exists on the same

Z QF2F1=Z PFIF3 --- i)
Z FIP-P'=Z PF2F3 --- ii)
Z QQFl=4 Q-F2F1 --- iii)

Because of the Prop.(1)
Due to the Prop.(3)

From conditions i), ii) and iii), £ FIP-P'=/ Q-QF1 is
valid. Therefore, a quadrangle Q-P-P'Q' exists on the same
circumference.

Prop.(7) Quadrangle PF2F3Q'
circumference.

[Proof]

From The Prop.(1), (3), (6) and Clifford's
theorem(Iwata,1987), the above Prop. is valid.

exists on the same

4. SEGMENT CONVEXITY SURFACE DERIVED FROM
THE COMPOSITION OF OVAL EXTENDED ELLIPSE

The segment convexity surface shall be considered from the
graphic with P-, Q-, P', Q', F1, F2, F3 being collinear as
shown in fig. 3 of section 3. So, we will obtain the
equations in following subsections from fig 4

Fig.4 Definition of Segment convexity surface

4.1 Curved surface derived from a segment P'Q' on the
radius vector passing the first focal point F1

With the length and position of segment P'Q' on the radius
vector F1P'Q', points P', Q' exist on the oval line whose
coordinates are defined as shown in fig. 4. The curved
surface produced by the segment P'Q' (or P-Q-) on the
radius vector passing the first focal point F1 is as follows:

1) mrl+nr2=kc (kK>m>n>0) Definition of bipolar
coordinate (c is the distance between bipole.)
i) 12’=c™+r1’-2crl - cos 6 Theorem of cosines
The segment (2 - rlR) generated by radius vectors rl, rl'
satisfying i) and ii) and its mid-point can be obtained as
follows: '
From i), o’ 12’=(kc - mrl)’ is valid. Inserting 12° of ii) into
this equation to sort out a term rl, the following equation
can be obtained:
iii) (m’-n’)rl’-2(km-ncos 6 )c - r1+K*-n')c’=0
From two solutions rl, rl' of iii),and from the relation of
solution and coefficient, the following expressions (product
and sum) can be acquired:
1l * r1'=(’-n*)c’/(m’n’)
r1C= (r1+r1') /2= (km-n’cos 6 ) ¢/ (m’-n°)
riR=abs (r1-r1') /2=sqrt ( (r1C) *rl - r1')

_ {km-n? cos(s))2 2 (B-n%)c?

- (mz_n2>2 T
It is used s insteed of € in the above and following
expressions.
Therefore, since the segment convexity surface in
cludes points on the circle with r1C as the distance between
origin and the center of the circle and rlR as radius, it can
be expressed as follows:
x:=r1C*cos (s) -r1R*cos (t) *cos (s) :
y:=r1R*sin (t) :
z:=r1C*sin (s) -r1R*cos (t) *sin (s) :
Here,Origin names F1.
This means that x, y, z are parametric expressions of t and
s if the above-indicated equations are used with rl1C and
riR.

Graphical indication of (%, y, z) with Maple V is shown in
fig. 5. It is a pseudo-torus.
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Fig.5 * Pseudo-torus with a Inverse Point
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4.2 Curved surface derived from a segment Q-P'- on the
radius vector passing the second focal point F2

Points Q-, P'- exist on the oval line whose coordinates are
defined as shown in fig. 4. Let origin be F2. In the same
way as section 4.1, the following equations are obtained:
mri+nr2=kc
r1*=c’+12°-2¢r2 - cos (5)
From the above expressions, rl is erased:
' (=K) = (m"2-k"2) * (¢*2) / (m"2-0"2)
r2C:= (k*n-m"2*cos (s) ) *c¢/ (m"2-n"2) : P
2R:=sqrt (12C"2- (m™2k"2) * (¢™2) / (m"2-0™2) ) : /1|
x:=12C*cos () -12R*cos (t) *cos (s) : /
y:=r2R*sin (t) :
z=12C*sin (s) -r2R*cos (t) *sin (s) :

The result of drawing this with Maple V is shown in fig. 6.
It is a self<crossing surface, whose part is opened as a
window.
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Fig. 6 Self-crossing surface

4.3 Curved surface derived from segments P-P'- and Q-Q'
on the radius vector passing the third focal point F3

With P-, P', in the same way as section 4.1, the following
equations are obtained from fig. 4:

4

i) kr1+nr3=mc'
r1’=c™+13%-2c'3 * cos (8)
c'= (k"2-m2) *¢/ (m"2-n"2)
- ¢' is-the distance between F1 and F3

For i) expression, please refer to the reference (Ebisui,
1996b). rl shall be erased:
here ¢' is notated as ¢3
c3:= (k*2-12) *c/ (m"2-n2) :
3C:= (k"2*cos (s) -m*n) *c3/ (k"2-n"2) :
3R:=sqrt (13C2- (k*2-m”2) * (¢372) / (k"2-n"2) ) :

> x=13C*cos (s) -13R*cos (t) *cos (s) :
> y=r3R*sin (1) :

%;7""> z:=13C*sin (s) -r3R*cos (t) *sin (s) :

| The above expression indicated the inner branch of P-, P'.

As for the outer branch of Q-, Q', n can be replaced with -n
in this formula.

The range of 6 :(s) for (x y, z) in the above
expression shall be obtained as follows:
mrltnr2=kc - - - - > fyrj-ny3-ml’
r1’=c*+13°-2¢'r3 - cos (s) ¢' is same above.
r3%=c’+r1>-2¢'r1 * cos (s
cos (s") =¢/ (ke/m) =m/k
From the above equations, 1, 13, s' shall be erased:
cos (s) = (sqrt ( (k"2-m"2) * (k"2-0"2) ) +m*n) / (k"2)
ss:=arccos ( ( sqrt ( ( k*2-m*2) * ( k"2-n"2) ) +m*n) /
(k*2))
-ss< s <ss

Here, the expression of inner branch is m*n, that of outer
branch is -m*n.

6 ' is the angle made by the radins vector of vertex in
"Theorem that the tangent to vertex of oval line passes the
third focal point (Ebisui, 1976)" and its initial line.

Fig. 7 indicates a double closed surface, whose part is
opened as a window.

[ > cgg=plot3d([x.y,z],t=0.5%Pi..2%Pi,s=—ssg+0.0001..ssg-0.0001):
[ > plots[display3d]({cen.cgel);

Fig. 7 Double closed surface
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5. PROPERTIES OF CONVEXITY SURFACE
5.1 Four order surface

In section 4, the following-shaped parametric expressions
were generally discussed:

x=C cos s -R (cos t) (cos s)

y=R sin t

z=Csins -R (cost) (sins)

R=C’K
where, C is the first order expression of (cos s) and K is a
constant.

From the above equations,useing these relations (
cos s = x/ (v (xX+Z)) tan s =z/x ) and erasing s
and t results in the following expressions:

(Rcostcoss) *(Rcostsins) ™+ (Rsint)’
=(Ccoss-x)+(Csins-2z) ™y
R’=C*2C (x cos s+z sin ) +x+y+7°
2C (V7 (£+7) ) =K+x'+y*+2

Here, uppercase C and K shall be inserted for the case of
section 4.2:
2 (A (cos s) +B) (¥ (x*+7)) ) =K+x’+y™+Z’
A=-m™2%¢/ (m"2-0"2 ):B=k*n*¢/ (m"2-0"2)
Both members shall be squared to remove v :

e 4

k2n2(12+22>62_[ m’cx +(m2—k2>62)2

3 B
x*+ye+zi+2
(m? - n2>2 ¥ m? - n? m? - n?

Here is the fourth order algeblic expression by (x*)
'=x"y'z" of self<cross surface. For other fourth order
expressions in section 4.1 and 4.3, the same computation

shall be performed.
5.2 The convexity surface has a center of inverse.

Generally, in plane figures, if rIrl'=r2r2'=d" is valid, where
d is a constant in Theorem of power as shown in fig.8, »
and r' have inverse relation to each other.

The comvexity surface is the curved surface whose
symmetric section includes the composition of inner and
outer branches of oval line as discussed in section 3 and
which is derived from this composition.

F)

rz’——J

Fig. 8 Inversion

<

Fig. 9 Space Inversion

In this composition, two nodes of inner and outer branches

of oval line with a radius vector passing its focal point F1
(similar for F2 and F3) have inverse relation to each other

with the focal point as center of inversion (Lockwood,
1964).

In fig. 9, FI1P-F1Q=F1F2 - F1F3=constant is true. For
points S, T as nodes of a line / passing a focal point F1
with convexity circle, F1S-+ F1T=F1P- F1Q=F1F2-
F1F3=constant is valid and S, T are imverse with F1.
Therefore, in the pseudotorus as discussed in section 4,
nodes of any line passing F1 with this curved surface have
a center of inversion F1 so that they have inverse relation
to each other. For the self-crossing and double closed
surfaces, F2 and F3 are centers of inversion, respectively.

6. CONCLUSION

Conversely following the above-mentioned deduction, a
circle is made using a segment of a radius vector on a
plane as diameter so that it has a center of inversion, to
make a convexity surface defined as its locus. As the result,
fourth order torus may be extended and double closed
surface and self-cross surface may make the structure of
fourth order comvexity curved surface more clear , and
these study may be utilized for the development or study of
technological software programs such as CG in oder to
create better culture and civilization Thanks a lot!
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APPENDIX

FX:=c/(mA2-nA2)*(kA2-n"2-(kA2*cos(s)-m*n)* A2*cos(s)-m*n)A2- (kA
> 2-m'\%/)(*r(';( 2 _r:' Az)) )(*cos(r:)*c és(s))?OS(S) m*n)*cos(s)+sqrt((kA2*cos(s)-m*n)A2-(k
FX:= ¢ (K- - (K cos(s)-m n) cos(s)

. A (R cos(s)-mny—(K-nf) (K- 17) cos(1) cos(s)) / (n? - i?)
F> FX =
*kAz.Az_kAz* -M*n)* kA .*A.A,A*A_A
g) )(*cos?t)*c ‘() k2 ﬁ?mss\sé)_ mzri) cos(s)+sqrt((kA2*cos(s)-m*n)*2-(kA2-mA2)*(kA2-n

FX:= c (K- - (K cos(s)-m n) cos(s)

 +4/(Rcos(s)-mn) - (R-nP) (R- ) cos(1) cos(s)) /(m? - 1?)

- > FY:=c*sart((k*2*cos(s)-m*n)*2-(kA2-mA2)*(kA2-nA2))*sin(t)(m*2-nA2);

FY = ¢/ (R cos(s)-m n) - (R-n?) (- 1?) sin(t)

i - n? - m?

M> Ll?);(:;:(zk_';lziggs(s)-m*n-sqrt((k"z*cos(s)-m*n)"z-(k'\2-m"2)*(k"2-n"2))*cos(t))*sin
FZ:= ¢ (R cos(s)-mn-/ (K cos(s)—m n) - (K- n?) (R— ?) cos(f))

sin(s) / (n? - m?)
" > ax:=subs(c=10,k=9,m=7,n=3,FX);
ax :=

] 18—‘-1‘- (81 cos(s)-21) cos(s)+%1/(81 cos(s)—21)*- 2304 cos(¢) cos(s)
[ > ay:=subs(c=10,k=9,m=7,n=3,FY);

L ay:=%\/(81 cos(s) - 21)2- 2304 sin(¢)

| > az:=subs(c=10,k=9,m=7,n=3,F2);

az:= 1 (81 cos(s) - 21 /(81 cos(s) 217~ 2308 cos( 1)) sin(.s)

s ss:=((m*n+sqrt((kA2-m*2)*(kA2-n"2)))/kA2);
mn++(R-m) (K- m?)
K

* The main body of this paper can be found on pp. 428-432 of these Proceedings (Vol. 2).
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[ > ssa:=subs(k=9,m=7,n=3,ss);

7 1
_ 8§84 := 27 + 81 2304
[ > sa:=arccos(ssa);

7 1
84 := arccos( 27 + 81 2304 )

E > c1:=plot3d([ax,ay,az],s=-sa..sa,t=0..2*Pi):

>
[ > bx:=subs(c=10,k=9,m=7,n=-3,FX);
bx :=

18—‘-} (81 cos(s) +21) cos(s)+%1/(81 cos(s) +21)? - 2304 cos( ) cos(s)
" > bby:=subs(c=10,k=9,m=7,n=-3,FY); |

bby := %1/(81 cos( s) +21)* - 2304 sin(¢)
M > bz:=subs(c=10,k=9,m=7,n=-3,F2);

bz:=%(81 cos(s) +21 4/ (81 cos( s) + 21)* — 2304 cos( 7)) sin(s)

C>
[ > ssb:=subs(k=9,m=7,n=-3,ss);
7 1
i ssb = ~27 + 81 2304
" > sh:=evalf(arccos(ssb),30);
L sb := 1.23095941734077468213492917825
C > #c2:=plot3d([bx,bby,bz],s=-sb+0.00001..sb-0.00001 ,t=0.5*Pi..2*Pi):
[ > c2:=plot3d([bx,bby,bz],s=-sb..sb,t=0.5*Pi..2*Pi):
" > plots[display3d]({c1,c2});
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(81 cos(s) +14) cos( s)+§\/(81 cos(s) +14)? - 2464 cos( f) cos( s)

V(81 cos(s) + 14)2_ 2464 sin( ¢)

(81 cos(s)+14- /(81 cos(s)+ 14)? — 2464 cos( 7)) sin( s)
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0.5*Pi..2*Pi):

1

-sb+0.00001..sb-0.00001
-sb..sb,t=0.75*Pi..2*Pi):

sb := 1.11521560018802359745160319564

— s._\_.;
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